P

中国建筑业协会团体标准 团体标准

T/CCIAT xxxx— 20xx

建筑基坑临时栈桥技术规程

Technical specification for temporary trestle of building foundation pit

(征求意见稿)

20xx— xx—xx 发布

20xx—xx —xx 实施

中国建筑业协会 发布

中国建筑业协会团体标准

建筑基坑临时栈桥技术规程

Technical specification for temporary trestle of building foundation pit

T/CCIAT xxxx— 20xx

批准部门: 中国建筑业协会

施行日期: 20xx 年 xx 月 xx 日

中国建筑工业出版社 20xx 北京

前言

根据中国建筑业协会《关于开展第三批团体标准编制工作的通知》(建协函 [2019]49 号)的要求,规程编制组经广泛调查研究,认真总结实践经验,参考 有关国际标准和国外先进标准,并在广泛征求意见的基础上,制定本规程。

本规程的主要技术内容是: 1. 总则; 2. 术语; 3. 基本规定; 4. 设计; 5. 施工; 6. 质量检测; 7. 监测; 8. 使用维护与拆除。

本规程由中国建筑业协会负责管理,由中建一局集团建设发展有限公司负责 具体技术内容的解释。请各单位在执行过程中,总结实践经验,积累资料,随时 将有关意见和建议反馈给中建一局集团建设发展有限公司(地址:北京市朝阳区 望花路西里 17号;邮政编码:100102)

本标准主编单位:中建一局集团建设发展有限公司

本标准参编单位:合肥工业大学、中国建筑科学研究院、建研地基基础工程有限责任公司、上海勘察设计研究院(集团)有限公司、成都四海岩土工程有限公司、北京启力岩土工程有限公司、北京城建中南土木工程集团有限公司、南京深地智能建造技术研究院有限公司

本标准主要起草人员: ×××、×××

本标准主要审查人员: ×××、×××

目 次

1	总则	1			
2	术语	2			
3	基本规定	3			
4	设计	1			
	4.1 一般规定4	1			
	4.2 选型与平面布置	1			
	4.3 栈桥荷载	<u>-</u>			
	4.4 梁板6	3			
	4.5 立柱与立柱桩	7			
	4.6 连杆	9			
	4.7 节点处理9	9			
5	施工	5			
	5.1 一般规定15	5			
	5.2 梁板155	5			
	5.3 立柱与立柱桩167	7			
	5.4 连杆178	3			
6	质量检测200	Э			
7	监测	1			
8	使用维护与拆除233	3			
	8.1 一般规定233	3			
	8.2 使用维护233	3			
	8.3 拆除255	5			
附录 A 栈桥检查验收项目276					
本	本规范用词说明277				
引用标准名录28					
条文说明3029					

Contents

I General Provisions				
2 Terms	. 2			
3 Basic Requirement	. 3			
4 Design	.4			
4.1 General Requirement.	.4			
4.2 Selection and Layout	.4			
4.3 Load Selection.	.5			
4.4 Beam and Slab.	.6			
4.5 Column and Erect Column Pile	.7			
4.6 Connecting Rod	.9			
4.7 Construction Requirements	.9			
5 Construction	15			
5.1 General Requirement.	15			
5.2 Beam and Slab.	15			
5.3 Column and Erect Column Pile	17			
5.4 Connecting Rod	18			
6 Quality Inspection				
7 Monitoring21				
8 Use & Maintenance & Demolition.	23			
8.1 General Requirement.	23			
8.2 Usage	23			
8.3 Demolition	25			
Appendix A Inspection and Acceptance Items of Trestle	26			
Explanation of Wording in This Code27				
List of Quoted Standards28				
Explanation of Provisions				

1 总则

- 1.0.1 为了在建筑基坑临时栈桥设计、施工中做到安全适用、保护环境、技术先进、经济合理、确保质量,制定本规程。
- 1.0.2 本规程适用于建筑基坑临时栈桥的设计、施工、检测、 监测、使用维护及拆除。
- 1.0.3 建筑基坑临时栈桥的设计与施工应综合考虑地质条件、使用环境、设计使用年限等因素,因地制宜、合理选型、优化设计、精心施工、严格监控。
- 1.0.4 建筑基坑临时栈桥的设计、施工、检测、监测、使用维护及拆除除应符合本规程的规定外,尚应符合国家、行业现行相关标准的规定。

2 术语

基坑临时栈桥 temporary trestle of foundation pit 基坑工程中由梁、板、立柱、立柱桩、连杆等组成,作 为运输通道或作业平台的结构,简称"栈桥"。按材质可

分为钢筋混凝土栈桥、钢栈桥、组合栈桥等, 按竖向设

置可分为水平栈桥、斜坡栈桥等。

钢筋混凝土栈桥 reinforced concrete trestle 2. 0. 2 以钢筋混凝土梁板作为运输通道或作业平台主要受力构

件的临时栈桥。

钢栈桥 steel trestle 2. 0. 3

2. 0. 1

以钢梁板作为运输通道或作业平台主要受力构件的临时 栈桥。

斜坡栈桥 slope trestle 2. 0. 4

竖直方向按一定坡度,标高逐渐变化的临时栈桥。

设计使用年限 design service life 2. 0. 5

> 在正常设计、施工、使用和维护条件下, 栈桥结构构件 不需进行大修或更换,即可按其预定目的使用的年限。

3 基本规定

- 3.0.1 栈桥应结合基坑支护形式、交通条件、土方挖运及其他 作业需求合理选型和布置。
- 3.0.2 栈桥设计应明确设计使用年限、用途、荷载和运输条件等。
- 3.0.3 栈桥设计使用年限不得少于基坑支护使用年限。
- 3.0.4 栈桥结构应满足承载能力极限状态和正常使用极限状态 的设计计算和验算要求。承载能力极限状态计算应采用 荷载效应基本组合,正常使用极限状态应采用荷载效应 标准组合。

4 设计

4.1 一般规定

- 4.1.1 栈桥设计应验算整体稳定性以及各构件承载力、变形、稳定性。对于结构不规则、荷载不均匀等情况,宜进行三维整体分析计算。
- 4.1.2 栈桥构件的变形应符合下列规定:
 - 1 栈桥构件的变形可根据构件刚度按结构力学的方法计算;
 - 2 栈桥梁的挠度宜小于其计算跨度的 1/200;
 - 3 立柱变形引起栈桥梁的变形不得超出第 2 款的规定,且不宜大于 30mm。
 - 4 相邻立柱间的差异变形不宜大于 30mm。

4.2 选型与平面布置

- 4.2.1 栈桥的选型和布置应根据下列因素综合考虑确定:
 - 1 基坑使用要求、平面形状和尺寸、土石方量和开挖深度;
 - 2 基坑大门位置、周围环境条件;
 - 3 场地工程地质和水文地质条件;
 - 4 支护结构类型和支撑形式;
 - 5 地下结构布置、工程造价、施工顺序、施工方法和工

期等;

- 6 当地工程经验和一般做法。
- 4.2.2 基坑支护结构采用内支撑支护形式时,栈桥选型宜与支撑材料类型一致。采用钢筋混凝土支撑形式时,栈桥布置宜与支撑相结合。
- 4.2.3 斜坡栈桥坡度宜为1:6~1:10。
- 4.2.4 栈桥宽度应根据车道数确定,单车道不宜小于6m,双车道不宜小于8m,转弯半径不宜小于所载车辆最小转弯半径,并不宜小于15m。
- 4.2.5 栈桥两侧应设置临边防护,可根据需要设置人行道。
- 4.2.6 栈桥立柱和立柱桩应避开主体结构框架梁、柱以及承重 墙的位置,宜设置在栈桥梁的交点处。
- 4.2.7 立柱与栈桥梁之间或立柱之间宜设置连接,以加强整体稳定性。

4.3 栈桥荷载

- 4.3.1 作用于栈桥结构体系的竖向荷载可分为永久荷载与可变 荷载。栈桥与支撑统一布置时,尚应考虑水平力。
- 4.3.2 永久荷载主要为栈桥结构体系的自重,包括栈桥板、主次梁、连杆、立柱、附属结构等。
- 4.3.3 可变荷载主要为施工荷载,包括车辆荷载、材料堆载、

行人荷载等。

4.3.4 永久荷载的分项系数宜取 1.2, 可变荷载的分项系数宜取 1.4。车辆、机械的动力系数宜取 1.1~1.3。材料堆载按实际荷载取值,车辆荷载参照《城市桥梁设计规范》 CJJ11-2011 取值,可取 20~50kPa。

4.4 梁板

I 钢筋混凝土栈桥梁板

- 4.4.1 栈桥梁板的混凝土强度等级不宜低于 C30。
- 4.4.2 栈桥梁按连续梁或简支梁(宽度方向为单跨时)进行分析计算,其计算跨度取相邻立柱中心距。
- 4.4.3 栈桥梁设计应符合下列规定:
 - 1 栈桥主梁跨度不宜大于 9m;
 - 2 栈桥梁的高度宜取 1/6~1/10L(L 为栈桥主梁跨度), 且不宜小于 600mm;
 - 3 栈桥梁纵筋直径不宜小于 20mm。
- 4.4.4 栈桥板可按单向板、双向板或三角形板进行分析计算, 栈桥板厚不宜小于 250mm, 栈桥板主筋直径不宜小于 16mm, 板内主筋间距不应大于 200mm。
- 4.4.5 对于斜坡栈桥梁与接坡处栈桥梁,应适当加强构造强度, 并使用复合箍筋,箍筋直径不宜小于10mm。

4.4.6 各类混凝土构件的相关计算应符合现行国家标准《混凝土结构设计规范》GB 50010 的规定。

II 钢栈桥梁板

- 4.4.7 钢栈桥钢材牌号不宜低于 Q235 钢。
- 4.4.8 钢梁可采用 H 型钢、工字钢、钢管及组合截面等。当采用组合截面时,组合截面构件间应采用缀板连接。钢梁上宜铺设钢板或者路基箱。
- 4.4.9 钢梁尚应进行局部稳定和节点连接验算。
- 4.4.10 各类钢构件的选型与验算均应符合现行国家标准《钢结构设计标准》GB 50017 的规定。

4.5 立柱与立柱桩

- 4.5.1 立柱宜采用角钢格构柱、H型钢柱和钢管混凝土柱,立柱长细比不宜大于30。相邻立柱的间距应根据栈桥梁的布置及竖向荷载确定,宜取6~12m,且不宜超过15m。
- 4.5.2 立柱采用钢管时,宜采用螺栓连接或焊接连接;栈桥立柱采用格构柱或型钢时,宜采用焊接连接;立柱连接位置应进行加强,连接强度应满足受力要求。
- 4.5.3 立柱宜按偏心受压构件进行承载力计算和稳定性验算, 计算时应充分考虑局部深坑开挖或者拆撑过程中的不利 工况,偏心距取栈桥梁安装偏差、立柱平面定位偏差和

立柱垂直度偏差三部分之和。单根立柱承受的支撑梁、 栈桥板荷载的计算范围宜按立柱两侧各 1/2 间距范围进 行计算。

- 4.5.4 立柱截面承载力计算应符合下列规定:
 - 1 立柱截面上的弯矩应包括竖向荷载对立柱截面形心的偏心弯矩、支撑轴向力的 1/50 作为横向水平力对立柱产生的弯矩、土方开挖时作用在立柱上的不平衡单向土压力引起的弯矩;
 - 2 立柱受压计算长度取竖向相邻水平栈桥连杆中心距, 最下一层连杆以下的立柱取该层连杆中心线至开挖面以 下5倍立柱直径(或边长)处的距离,且应考虑拆撑时 不利工况的长度。
- 4.5.5 立柱应考虑由于基坑隆起引起的差异变形。
- 4.5.6 立柱与栈桥梁的连接可采用铰接连接,在节点处应根据 承受的荷载大小,设置抗剪钢筋或钢牛腿等抗剪措施。 立柱穿过主体结构底板的部位,应采取有效的止水措施。
- 4.5.7 立柱桩宜采用灌注桩,可与基础桩共用。
- 4.5.8 当采用灌注桩作为立柱桩时,桩径不宜小于650mm,必要时可采用顶部扩径。立柱锚入立柱桩的深度应满足受力要求,不应小于立柱长边或立柱直径的4倍,且不宜小于3m。

- 4.5.9 立柱桩应满足承载力的要求,竖向荷载应按最不利工况 取值。
- 4.5.10 立柱桩处于冻土、盐渍土、湿陷性黄土、膨胀土、松散 填土等地层时,应考虑其不利影响采取特殊加强措施。

4.6 连杆

- 4.6.1 栈桥连杆的长细比不宜大于120。
- 4.6.2 栈桥水平连杆和交叉连杆的构造应符合以下规定:
 - 1 水平连杆和交叉连杆宜采用槽钢或工字钢;
 - 2 水平连杆和交叉连杆规格应通过竖向荷载及立柱间距计算确定:
 - 3 各道水平连杆宜在同一水平面内,竖向间距宜 5~8m, 并避开主体地下结构、楼板和水平支撑的位置;
 - 4 水平连杆至基底的净高不宜小于 3m。
- 4.6.3 连杆和立柱之间宜设置连接板。连接板尺寸宜大于栈桥 立柱缀板尺寸,连杆和立柱分别与中间的连接板进行焊 接或栓接。
- 4.6.4 栈桥连杆应进行抗压强度和抗压稳定承载力计算,应按 最不利位置计算连杆的内力。

4.7 节点处理

4.7.1 采用钢筋混凝土栈桥时,栈桥面板宜与栈桥梁一起浇筑,

且栈桥板钢筋应锚入栈桥梁不少于35d(图4.7.1)。

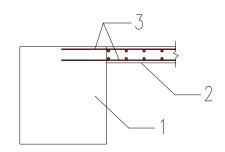


图 4.7.1 栈桥梁、板连接示意图 1-栈桥梁; 2-栈桥板; 3-栈桥板钢筋

4.7.2 采用斜坡栈桥时,应保证斜向栈桥板和平直段栈桥板的 有效连接。钢栈桥斜板面和平板面间应焊接牢固,混凝 土栈桥板面钢筋锚固长度不小于35d(图4.7.2)。

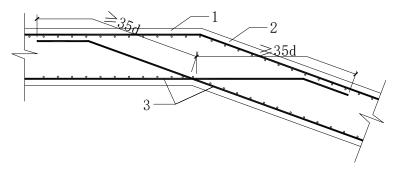
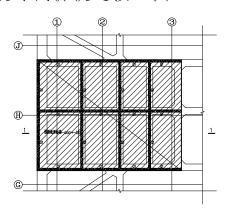



图 4.7.2 混凝土栈桥斜板与平板连接示意图 1-栈桥平板; 2-栈桥斜板; 3-栈桥板纵向主筋

4.7.3 栈桥位于钢筋混凝土支撑上方时,可自首道支撑起采用 短柱或墙肢与栈桥板连接(图 4.7.3)。

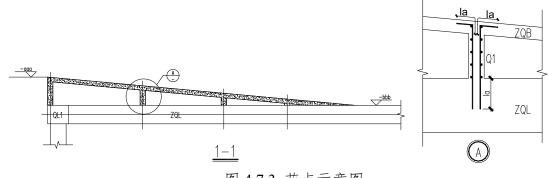


图 4.7.3 节点示意图

- 4.7.4 栈桥应设置防滑措施。混凝土栈桥可在栈桥板面采用刻槽、压槽、拉槽或拉毛等方法形成一定的构造深度;钢 栈桥可在板面焊接螺纹钢筋作为防滑条,钢筋防滑条间 距宜为300~500mm。
- 4.7.5 栈桥面板宜设置排水措施,通过排水管将雨水、积水等 收集至基坑内集水坑后统一抽排至基坑外。
- 4.7.6 栈桥边缘宜设置防护措施。栈桥面板宜设置上翻梁,上翻梁钢筋锚入混凝土面板不小于35d或与钢栈桥面板焊接不小于10d(双面焊不小于5d)。上翻梁高度不宜小于300mm,顶部应设置防护栏杆,栏杆高度不宜小于1200mm(图4.7.6)。

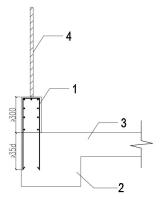


图 4.7.6 栈桥防护示意图 1-栈桥上翻梁; 2-栈桥边梁; 3-栈桥板; 4-防护栏杆

4.7.7 采用钢筋混凝土栈桥时,栈桥梁与立柱应连接牢固,立柱宜在栈桥梁底设置托板及加劲板(图 4.7.7-1、图 4.7.7-2)。

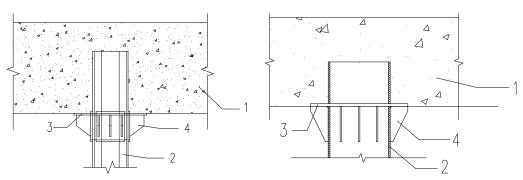


图 4.7.7-1 格构柱/钢管立柱与栈桥梁节点立面示意图 1-栈桥梁: 2-格构柱/钢管柱: 3-托板: 4-加劲板

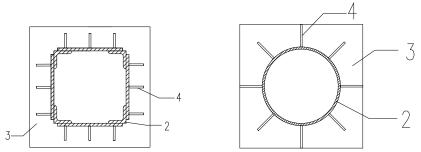


图 4.7.7-2 格构柱/钢管立柱与栈桥梁节点平面示意图 1-格构柱/钢管柱: 3-托板: 4-加劲板

4.7.8 当采用混凝土栈桥,栈桥立柱中心偏离栈桥梁时,应将 栈桥梁局部扩大,局部扩大范围应设置加强钢筋,覆盖 立柱范围并满足构造及受力要求(图 4.7.8)。

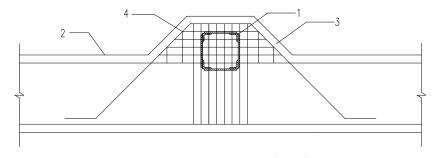


图 4.7.8 栈桥梁局部扩大示意图 1-栈桥立柱; 2-栈桥梁; 3-栈桥梁局部扩大部分; 4-加强钢筋

4.7.9 当采用灌注桩作为栈桥立柱的基础时、钢管、格构柱或

其他形式立柱应与灌注桩钢筋笼焊接牢固,焊接点不宜少于4个,必要时可另设构造筋将立柱与钢筋笼连接,焊接长度不小于10d(采用双面焊时不小于5d)(图4.7.9)。

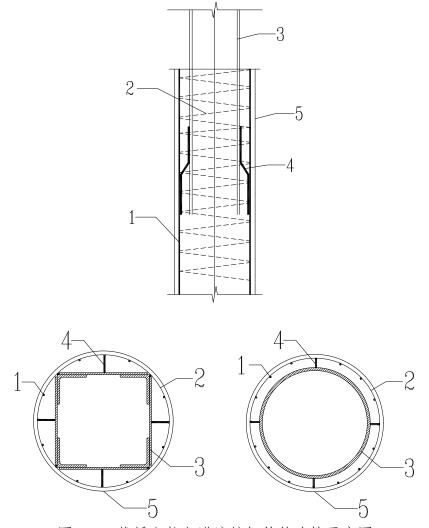


图 4.7.9 栈桥立柱与灌注桩钢筋笼连接示意图

1-钢筋笼主筋; 2-钢筋笼螺旋箍筋; 3-栈桥立柱; 4-构造筋; 5-灌注桩 4.7.10 栈桥立柱穿过主体结构底板的部位,应在底板厚度中心 位置立柱周圈焊接止水钢板,止水钢板宽度不宜小于 100mm、厚度不宜小于6mm,止水钢板焊接采用满焊(图 4.7.10)。

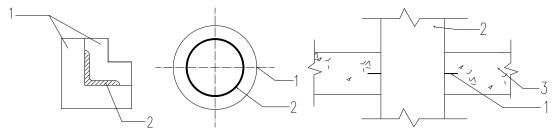


图 4.7.10 栈桥立柱底板位置止水示意图 1-止水钢板; 2-栈桥立柱; 3-底板

4.7.11 钢柱柱顶与钢梁连接位置宜设置封板和加劲肋(图4.7.11)。

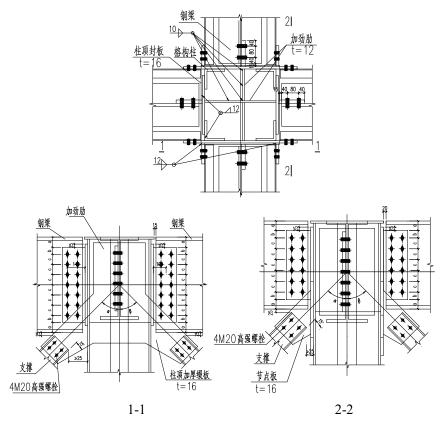


图 4.7.11 柱顶与钢梁连接节点示意图

5 施工

5.1 一般规定

- 5.1.1 基坑临时栈桥施工前应熟悉设计文件,对构件设计尺寸 和关键施工参数进行核对,且应由设计单位进行设计交 底。
- 5.1.2 施工前,应按有关规定编制、评审和审批施工方案,并 应进行技术交底。
- 5.1.3 栈桥构件的安装应与土方开挖、降水和基坑支护施工密 切配合。
- 5.1.4 栈桥使用的钢材、钢筋、水泥、砂、石等原材料的质量 标准,应按相关标准执行。
- 5.1.5 五级以上大风、大雾和雨雪等恶劣天气,不得进行栈桥 施工作业。
- 5.1.6 所有钢材及配件应进行防锈防腐处理。

5.2 梁板

I 钢筋混凝土栈桥梁板

- 5.2.1 梁板浇筑应首先考虑将现场土方开挖至设计标高,尽量不采用支架。若采用支架,可采用满布支架或梁式支架,且应对支架进行计算,保证其稳定性。
- 5.2.2 钢筋混凝土栈桥梁板现浇施工时,梁体混凝土在顺桥向

宜从低处向高处进行浇筑,在横桥向宜对称进行浇筑。 混凝土浇筑过程中,应对支架的变形和支架地基的沉降 等进行监测,如发现超过预警值的变形、变位,应及时 采取措施。

- 5.2.3 分段拼接栈桥梁的接头混凝土或砂浆,其强度应不低于 梁体的设计强度。
- 5.2.4 栈桥梁板底模应具有足够的强度和刚度,采用混凝土垫层作底模时,应有隔离措施,挖土时应及时清除吸附在栈桥梁板底部的块体。
- 5.2.5 斜坡栈桥梁板下土方必须压实。
- 5.2.6 立柱与栈桥梁节点处,栈桥梁钢筋宜从立柱侧面绕行贯 通,若空间过小也可采用传力钢板法。

II 钢栈桥梁板

- 5.2.7 钢梁宜设置温度伸缩缝。
- 5.2.8 钢栈桥构件连接可采取焊接或栓接的方式。
- 5.2.9 梁、板安(吊)装时,应采取有效措施。
- 5.2.10 安装完成后,应详细检查运输、安装过程汇总涂层的擦 伤,并补刷油漆,对所有的连接螺栓应逐一检查。

5.3 立柱与立柱桩

5.3.1 栈桥立柱和立柱桩的施工应符合下列规定:

- 1 栈桥立柱桩混凝土的浇筑面宜高于设计桩顶 500mm;
- 2 立柱的加工、运输、堆放应采取控制平直度的技术措施;
- 3 栈桥立柱的定位和垂直度宜采用专门措施进行控制, 对格构柱、H型钢柱,尚应同时控制方向偏差;
- 4采用钢立柱时,钢立柱柱宜先安装就位,再浇筑立柱桩混凝土;
- 5 立柱周围的空隙应用碎石回填密实,应避免在负荷状态下对立柱主体施焊。
- 5.3.2 栈桥立柱和立柱桩的施工偏差应符合下列规定:
 - 1 临时栈桥立柱平面位置的允许偏差应为 50mm, 垂直度的允许偏差应为 1/200;
 - 2 栈桥立柱用作主体结构构件时,立柱平面位置的允许偏差应为10mm,垂直度允许偏差应为1/300;
 - 3 立柱桩的垂直度允许偏差应为 1/150;
 - 4 立柱桩底沉渣厚度不应大于 50mm;
 - 5 立柱和立柱桩定位偏差不应大于 20mm;
 - 6 格构柱、H型钢柱转向不宜大于5°。

5.4 连杆

5.4.1 土方开挖至连杆施工作业面后,应及时施工连杆。

- 5.4.2 立柱、连杆和连接板的焊缝等级为三级,焊接材料为焊条。
- 5.4.3 连接板焊接完成后应采用靠尺及吊锤对垂直度及水平度进行检查;每排立柱上的不同连接板安装时必须确保在同一平面内。
- 5.4.4 当连杆超过材料规格长度时,将钢材进行对接焊接,四周满焊,在焊接位置增加缀板焊接。钢材对接时须切成45°斜面进行焊接(图 5.4.4)。

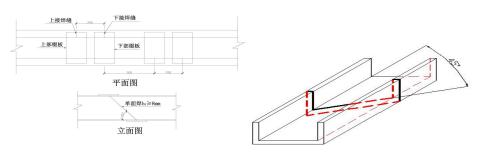


图 5.4.4 槽钢对接焊接示意图

- 5.4.5 连杆施工质量应符合下列规定:
 - 1 焊缝表面应平整,不得有气孔、夹渣和肉眼可见的裂痕。
 - 2 母材上待焊接的表面和两侧应均匀、光洁,且应无毛刺、裂纹和其他对焊缝质量有不利影响的缺陷。待焊接的表面及距焊缝破口边缘位置 30mm 范围内不得有影响正常焊接和焊缝质量的氧化皮、锈蚀、油脂、水等杂物。3 连杆在地下结构梁板浇筑完成并达到设计强度的 80% 后方可拆除。

6 质量检测

- 6.0.1 钢板、型材和管材的品种、规格、性能应符合《钢结构工程施工质量验收标准》GB50205 的规定并满足设计要求。
- 6.0.2 钢筋、混凝土工程的质量检验应符合《混凝土结构工程 施工质量验收规范》 GB50204 的相关规定。
- 6.0.3 桩基的质量检验应符合《建筑工程施工质量验收统一标准》GB50300的相关规定。
- 6.0.4 栈桥结构安装允许偏差应符合表 6.0.4 的规定。

表 6.0.4 栈桥结构安装允许偏差

序号 项目		允许偏差 (mm)
1	栈桥梁截面尺寸	+8, -5
2	立柱垂直度	不大于 1/200 栈桥高度
3	栈桥梁与立柱轴线偏差	不大于 50
4	栈桥梁水平轴线偏差	不大于 30
5	立柱桩沉渣厚度	不大于 50

7 监测

- 7.0.1 在栈桥使用期间应进行变形及内力监测。
- 7.0.2 栈桥结构应按有关规定编制监测方案,包括监测点布置、 监测方法、监测人员及主要仪器设备、监测频率和监测 报警值。
- 7.0.3 位移监测点的布设应符合下列规定:
 - 1 每个栈桥结构应设基准点,可与基坑监测共用;
 - 2 在栈桥梁、立柱处布置位移监测点:
 - 3 监测点应设在角部和四边的中部位置。
- 7.0.4 内力监测测点布设应符合下列规定:
 - 1 在栈桥立柱和梁跨中布置内力监测点;
 - 2 应力监测数据宜自动连续采集。
- 7.0.5 监测设备应符合下列规定:
 - 1 应满足观测精度和量程的要求;
 - 2 应具有良好的稳定性和可靠性;
 - 3 应经过校准或标定,且校核记录和标定资料齐全,并应在规定的校准有效期内;
 - 4 应减少现场线路布置布线长度,不得影响现场施工正常进行。
- 7.0.6 监测点应稳固、明显,应设监测装置和监测点的保护装

置。

- 7.0.7 监测项目的监测频率应根据栈桥结构规模、周边环境、 施工阶段等因素确定。栈桥使用期间位移监测频率不应 少于每日1次,内力监测频率不应少于2小时1次。监 测数据变化量较大或速率加快时,应提高监测频率。
- 7.0.8 当出现下列情况之一时,应暂时停止栈桥使用,并应迅速撤离作业面上的人员,启动应急预案:
 - 1 监测数据达到报警值时:
 - 2 栈桥结构的荷载突然发生意外变化时。
- 7.0.9 监测报警值应根据监测项目的累计变化量和变化速率确定,并应满足表7.0.9的规定。

表 7.0.9 监测报警值

监测指标	限值
内力	设计计算值
	近 3 次读数平均值的 1.5 倍
位移	水平位移量: H/200
	竖直位移量: 30mm
	近 3 次读数平均值的 1.5 倍

7.0.10 监测资料宜包括监测方案、内力及变形记录、监测分析 及结论。

8 使用维护与拆除

8.1 一般规定

- 8.1.1 栈桥使用单位应明确负责人和岗位职责,进行栈桥安全使用与维护技术安全交底和培训,制定必要的应急处置,监测异常时的处理程序,检查作业安全交底与应急处置演练,并应制定检查、维护等制度。
- 8.1.2 栈桥使用期间应在醒目位置设置限载指示牌和警示标志。
- 8.1.3 栈桥在使用过程中,不应更改原设计的使用功能,严禁 超载;当确需改变栈桥的使用功能时,必须由设计单位 复核和加固。
- 8.1.4 现场应加强对栈桥的管控、检查,发现问题及时维护。 使用单位应对后续施工中存在的影响栈桥安全的行为及 时制止,消除可能发生的安全隐患。
- 8.1.5 栈桥结构使用过程中,严禁拆除构配件。

8.2 使用维护

8.2.1 钢筋混凝土栈桥待混凝土结构强度达到设计强度的 80% 时,栈桥才可作为运输道路供运输车辆通行。钢栈桥架设完毕后应进行一次全面检查,发现安全及质量问题及时采取可靠的纠正措施。栈桥交付使用后,必须定期进

行检查和维护。

- 8.2.2 土方开挖挖土应按距栈桥从远到近进行退挖,并且应按 分层、分段、分块的原则进行开挖。
- 8.2.3 转运的土方应堆在栈桥周边并在挖机回转半径范围内堆高。
- 8.2.4 开挖过程中应注意保护立柱不被机械碰撞损伤,在挖机 挖至立柱外围 20cm 土方时,应采用人工掏土进行立柱附 近土方开挖。
- 8.2.5 施工机械或运输车辆在栈桥上行驶时,应在栈桥中间限 速行驶,不单边行驶或停在一侧待装土。
- 8.2.6 挖土机停靠位置之间应保持一定的安全距离,避免多台满载设备位于同一跨度等不利荷载分布情况。且土方车辆不得在同一跨及相邻跨停留。
- 8.2.7 在栈桥上的各种挖土、取土设备在挖土、取土半径范围 内作业时,操作不应过猛,履带不宜单边受力,应与栈 桥边保持一定距离。
- 8.2.8 栈桥两侧应搭设防护栏杆。
- 8.2.9 栈桥为基坑临时结构,主体结构施工期间如需使用需评估后确定,必要时进行加固处理。

8.3 拆除

- 8.3.1 栈桥的整体拆除顺序应与栈桥安装顺序相反。
- 8.3.2 当栈桥与内支撑结构结合时,栈桥应在施工完成换撑并 达到设计要求后方可拆除。
- 8.3.3 混凝土栈桥拆除时,应首先进行栈桥面板破碎,然后切断栈桥梁与围檩结构的连接,之后依次拆除次梁和主梁,最后拆除栈桥立柱连杆和栈桥立柱。
- 8.3.4 钢栈桥拆除时可采用火焰切割,动火作业应满足安全管理规定;混凝土栈桥拆除方法可采用人工拆除、机械拆除、爆破拆除、静力切割拆除等,作业方法应满足操作规程;栈桥拆除分段长度、重量应考虑起重机起吊能力。
- 8.3.5 栈桥拆除施工过程中, 栈桥上严禁堆载, 并应限制施工 机械超载, 确保栈桥剩余部分结构的稳定性。
- 8.3.6 栈桥拆除过程中,应加强安全巡视,做好安全保护措施; 作业区域下方严禁作业人员、 施工。
- 8.3.7 拆除作业应采取降尘、降噪措施。
- 8.3.8 栈桥拆除过程中应设置围栏和警戒标志,派专人看守, 严禁非操作人员进入作业范围。

附表 A 栈桥检查验收项目

序号		检查项目	检查内容及要求
1	保证项目	施工方案	安装前应编制专项施工方案,进行设计计算,并 应按照规定进行审核、审批
2		构造	截面尺寸、立柱及连杆间距、混凝土强度、钢材 牌号等符合设计要求
3		施工荷载	限载要求与设计一致
4		交底与验收	栈桥结构搭设、拆除前应进行交底,并有交底记录; 搭设完毕,应按照规定组织验收
5		焊接质量	符合设计要求
6	一般	拆除	拆除前应设置警戒区,并应设专人监护
7	项目	安全防护	防护栏杆

本规范用词说明

- 1 为便于在执行本标准(规范、规程)条文时区别对待, 对于要求严格程度不同的用词说明如下:
 - 1)表示很严格,非这样做不可的: 正面词采用"必须";反面词采用"严禁"。
 - 2) 表示严格,在正常情况下均应这样做的: 正面词采用"应";反面词采用"不应"或"不得"。
 - 3) 表示允许稍有选择,在条件许可时首先应这样做的: 正面词采用"宜";反面词采用"不宜"。
 - 4) 表示有选择, 在一定条件下可以这样做的, 采用"可"。
- 2 条文中指明必须按其他标准、规范执行的写法为 "按·····执行"或"应符合·····的规定"

引用标准名录

- 《混凝土结构设计规范》GB50010
- 《钢结构设计标准》GB50017
- 《建筑地基基础工程施工质量验收规范》GB50202
- 《钢结构工程施工质量验收规范》GB50205
- 《建筑基坑工程监测技术规范》GB50497
- 《建筑基坑支护技术规程》JGJ120
- 《城市桥梁设计规范》CJJ11-2011

中国建筑业协会团体标准

建筑基坑临时栈桥技术规程

Technical specification for temporary trestle of building foundation pit

条文说明

制定说明

《建筑基坑临时栈桥技术规程》(T/CCIAT xxxx— 20xx), 经中国建筑业协会×××年××月××日以第××号公告批准发布。

本规程制订过程中,编制组进行了广泛调查研究,总结了我国工程建设基坑 临时栈桥的实践经验。

为便于广大设计、施工、科研、学校等单位有关人员在使用本标准时能正确 理解和执行条文规定,《建筑基坑临时栈桥技术规程》编制组按章、节、条顺序 编制了本标准的条文说明,对条文规定的目的、依据以及执行中需注意的有关事 项进行了说明。但是,本条文说明不具备与标准正文同等的法律效力,仅供使用 者作为理解和把握标准规定的参考。

1 总则

- 1.0.1 本条是基坑工程临时栈桥结构设计和施工必须遵循的基本原则。
- 1.0.2 本条明确了规程的适用范围。
- 1.0.3 建筑基坑临时栈桥的设计、施工应综合考虑地质条件、 使用环境、设计使用期限等因素,确保满足安全和使用 要求。

2 术语与符号

基坑临时栈桥为基坑工程中由梁、板、立柱、立柱桩、连杆等组成,作为运输通道或作业平台的结构。按材质可分为钢筋混凝土栈桥、钢栈桥、组合栈桥等,按竖向设置可分为水平栈桥、斜栈桥、螺旋栈桥等。

钢筋混凝土栈桥往往采用梁板体系,受力明确、可靠;平面布置灵活,若结合支撑进行布置,造价较低。

钢栈桥架设、拆除方便,用钢量大,造价较高,但材料有一定的重复利用率,对节点的焊接质量要求较高。钢栈桥可进一步细分型钢栈桥、贝雷片栈桥等。

3 基本规定

- 3.0.2 栈桥设计应明确施工栈桥的使用期限、用途、荷载和运输条件等。栈桥用途可分为运输通道和作业平台,不同用途荷载不同。
- 3.0.4 规定了栈桥结构承载能力极限状态设计和正常使用极限 状态设计时应采用的荷载效应组合。

4 设计

4.1 一般规定

- 4.1.1 为保证栈桥使用安全,栈桥应进行承载力、稳定性及变 形设计计算。栈桥与内支撑相结合设计时,应验算包括 内支撑和栈桥在内的整体结构体系的稳定性。
- 4.1.2 栈桥变形限值应以不影响结构使用功能、外观及其他构件的连接等要求为目的。

4.2 选型与平面布置

- 4.2.1 本条介绍了栈桥选型和布置需考虑的因素。栈桥宜结合 场地大门位置设置成环路。
- 4.2.2 栈桥形式的确定与支撑的布置是相互影响的。支撑采用 钢管,钢栈桥的标高宜设置在支撑面以上,保证栈桥梁 和支撑相互独立,互不影响,立柱可以共用。混凝土支 撑或型钢支撑,支撑杆件和栈桥梁可以共用,栈桥可与 首道支撑设置在同一标高。
- 4.2.3 栈桥坡度首先取决于安全和驾驶员的心理影响,其次是机动车爬坡能力和刹车能力。根据已有工程经验,给出斜坡栈桥的常用坡度。
- 4.2.4 栈桥宽度根据施工机械的轮距和施工过程中车辆的调配、 行车路线以及以往栈桥工程案例,给出栈桥宽度、转弯

半径的建议值。

4.2.5~4.2.7 对于立柱、栈桥梁等的节点处理、 必要的联系杆件的设置等对确保整个栈桥体系的稳定和 安全是非常重要的。立柱若与主体结构梁、柱或承重墙 的位置相冲突,往往会对主体结构构件的钢筋摆放造成 困难,从而需要采取加大主体结构构件尺寸等处理措施, 影响主体结构的施工质量,应尽量避免出现这种情况。

4.3 栈桥荷载

栈桥的设计必须考虑施工荷载、栈桥自重等各种动、静载荷的作 用,以满足强度、刚度、稳定性的要求。

4.4 梁板

本节规定了栈桥梁板的构造要求。栈桥梁板构件的构造,尚应符合现行国家标准《混凝土结构设计规范》(GB50010)、《钢结构设计标准》(GB50017)的有关规定。

4.5 立柱与立柱桩

4.5.1~4.5.2 由于栈桥板自重及栈桥板上施工活载或堆载较大,栈桥下立柱桩所受竖向荷载值也偏大,因此作为栈桥竖向承重构件,立柱及立柱桩要求具有较好自身刚度和较小垂直位移。绝大部分栈桥立柱都采用

角钢格构拄,立柱桩采用钻孔灌注桩。采用角钢格构柱做立柱,其特点是承载能力强、稳定性好,基础底板、各层楼板的钢筋易插穿格构柱,对主体结构施工影响小,适用范围广。在立柱穿越底板处,可直接加焊止水钢片,止水效果可靠。缺点是目重较大不易安装,现场焊接时间长。钢栈桥宜采用钢管立柱,钢管立柱顶部宜设置栈桥钢梁限位措施,防止钢梁移位。

- 4.5.3 工程中常用灌注桩作为立柱桩将钢立柱承担的竖向荷载传递至基础。立柱桩可以是专门加打的钻孔灌注桩,但考虑到基坑工程作为临时结构,在条件允许的情况下应尽可能利用主体结构工程桩以降低工程造价,提高工程经济性。
- 4.5.5 受基坑支撑布置、工程桩等因素的影响,栈桥梁的布置 间距并不一定相同,因此,计算板重(梁的从属面积)应 按照梁两侧各 1/2 梁间距范围内的实际面积确定;而竖 向荷载分配模式是根据栈桥板传递竖向荷载的方式确定 的。
- 4.5.6 单向布置的平面栈桥体系,栈桥平面内的纵向稳定由立柱来保证。根据经验,维持栈桥纵向稳定所需的横向力约为其轴向力的 1/50,因此立柱的验算需要考虑由横向力产生的附加力矩,同时还需要考虑土方开挖时作用在

立柱上的不平衡单向土压力引起的弯矩。

4.6 连杆

4.6.1~4.6.3 在基坑开挖过程中,栈桥立柱外露 长度逐渐增加,为减小栈桥立柱的长细比,确保受压后 不失稳破坏,保证栈桥系统的整体稳定性,相邻立柱间 采用水平连杆和交叉连杆进行连接固定。水平连杆和交 叉连杆应与立柱焊接或螺栓连接,确保连接节点可靠。

4.7 节点处理

- 4.7.1~4.7.2 对于基坑栈桥,应保证整体工作性能,加强节点强度。混凝土栈桥梁与板、平板与斜板宜同时浇筑,同时连接处钢筋的锚固长度应满足要求。钢栈桥不同构件之间多采用焊接或螺栓连接,不同构件间的连接强度应满足《钢结构设计标准》(GB50017)的相关规定。
- 4.7.4 基坑栈桥是进出基坑的重要通道,除应满足基本通行要求外,还应设置必要的附属保护措施。由于大量栈桥为斜坡形式,为保证车辆行驶稳定性,栈桥板应设置必要的防滑措施。栈桥为临时设施,防滑以简单实用为主,混凝土栈桥板面可进行刻槽、压槽、拉槽或拉毛,增加混凝土表面的粗糙度:钢栈桥板面可焊接螺纹钢筋进行

防滑处理。

- 4.7.7~4.7.8 栈桥使用过程中,栈桥梁承受来自 栈桥板传递的荷载,栈桥梁将梁板工作荷载及自重荷载 传递至栈桥立柱。为保证梁柱之间的传力性能,梁柱间 节点应合理可靠,既能保证荷载传递效果,又要防止节 点位移过大。基坑工程中,栈桥立柱通常采用灌注桩作 为基础。立柱和灌注桩之间连接应牢固稳定,施工时应 将立柱伸入到钢筋笼内并连接牢固,防止下放过程中出 现钢筋笼和立柱脱离。立柱锚入灌注桩的长度应满足要 求,避免栈桥使用过程中立柱出现过大沉降或水平位移。
- 4.7.10 当底板施工前栈桥无法拆除时,立柱在底板的部分容易成为地下水的渗流通道,故应采用合理的止水措施,一般多采用焊接止水钢板等方式延长地下水渗流通道。

5 施工

5.1 一般规定

- 5.1.3 特别要注意土方开挖的对称性,以保证立柱周围土压力的对称性。
- 5.1.5 沿海地区应考虑台风影响。

5.2 梁板

- 5.2.1 对弯、坡、斜栈桥,其支架的设置应适应梁体相应几何 线形的变化,且应采取有效措施保证支架的稳定性。
- 5.2.4 土方开挖时,应清除栈桥梁底模,避免底模附着在栈桥梁底部。若采用混凝土垫层作为底模,必须在栈桥梁以下土方开挖时及时清理干净,否则附着的底模在后续施工过程中一旦发生脱落,可能造成人员伤亡事故。为了方便清除混凝土垫层底模,应在栈桥梁和底模之间设置隔离措施。
- 5.2.5 斜坡栈桥梁板下土方必须压实,保证在绑扎钢筋和浇筑 混凝土过程中不会发生较大的沉降。浇筑斜坡栈桥梁板 下的混凝土垫层时,垫层厚度从两边向中间逐渐加厚, 起到起拱作用,有利于梁板受力。

5.3 立柱与立柱桩

5.3.2 立柱桩一般是临时结构,但立柱桩工作期间处于单桩受荷状态,各桩之间的不均匀沉降控制要求比工程桩更高。因此施工时必须同样严格控制桩底沉渣厚度,减少立柱桩受荷沉降。立柱转向角度偏差过大,会对钢筋施工带来困难,因此作出规定。

7 监测

- 7.0.3 位移监测点的布置原则应最大程度地反映出结构的变形模态。本条规定了对栈桥结构位移监测点的具体位置。
- 7.0.4 内力监测反映杆件实际工作状态下的受力状态,是评价 栈桥承载情况的重要指标。内力监测点的布置原则应根 据其杆件所处位置的重要性和实际受力情况考虑,并同 时兼顾监测方案的成本。
- 7.0.5 本条规定保证了监测设备在精度、可靠性等方面满足工程监测需求。
- 7.0.7 本条对监测频率做了基本规定。
- 7.0.8 本条规定了结构在出现数据异常、事故征兆与周边荷载 环境变化较大等情况下,加大监测频率,进行实时监测 及启动应急预案的要求。
- 7.0.9 本条规定了监测报警值的取值参考范围,其同时兼顾了 累计变化量与变化速率值两个参考量。
- 7.0.10 监测记录是整个监测过程的重要环节,应做到记录工作的规范性、记录人员的诚实性、并确保不遗漏主要信息、及时作出反馈。

8 使用维护与拆除

8.1 一般规定

- 8.1.1 建立维护栈桥的相关制度,并做好维护记录。在使用阶段,应专门成立栈桥维护小组,每天派专人对栈桥的上、下部结构进行检查,发现问题及时处理。
- 8.1.3 施工过程中严格控制施工栈桥区域的荷载大小,确保荷载满足设计要求,非栈桥区域严禁作用施工荷载。 栈桥在使用过程中用途发生变化时,将影响栈桥的稳定性,应重新进行复核验算。
- 8.1.4 栈桥维护是栈桥安全使用的重要环节,首先要完善日常 检查工作,对栈桥各个重要受力构件进行节点监控;其 次注重日常管理,严格控制栈桥荷载不超过设计要求。

8.2 使用维护

- 8.2.1 使用期间注重日常管理,完善日常检查工作,重点关注 监测数据,如有异常立即处理。特别检查钢结构的变形、 裂缝和腐蚀、生锈情况。
- 8.2.2 开挖过程中,按照规范要求进行纵放坡,严禁掏挖。挖 上顺序、流程及方式严格按规范及设计要求进行,不得 超挖。立柱周边对称掏空,以防止立柱受力不均。挖出

的土方应及时运走,严禁堆放在栈桥上。

- 8.2.4 土方开挖期间,应设专人指挥,注意挖土机械不得损坏 栈桥结构,尤其立柱附近土方开挖时需特别注意,避免 机械损伤立柱。
- 8.2.5 土方装车作业应轻放,尽量减少装车冲击。渣土车在栈 桥上应慢速平稳行驶和制动,不应出现紧急制动的情况, 特别是满载土方车,行车速度不得超过 5km/h。满载后 遇栈桥面凹凸不平的情况,需处理平整或缓慢驶过,不 得强行冲过。
- 8.2.8 栏杆设置应具备足够强度以确保施工车辆及人员安全。 并刷上红、白相间的反光油漆,警示作用鲜明。

8.3 拆除

8.3.1~8.3.3 栈桥拆除有一定的风险性,施工前应编制拆除方案,对施工人员进行技术交底,对拆除方法、拆除顺序等做到心中有数。栈桥使用到期后,可进行拆除,但目前大量基坑栈桥都与内支撑结构相互结合,以减少栈桥造价。此类栈桥拆除时,必须满足基坑支护结构设计工况要求,一般应先施工换撑并达到设计强度要求后,方可进行栈桥及支撑的拆除。

钢栈桥拆除一般按照"后装先拆、先装后拆"的原则,

按顺序拆除,减小拆除过程中的风险。混凝土栈桥拆除时应考虑对支护结构稳定性的影响。一般先将面板破碎拆除,然后切断栈桥梁与围护结构的联系,减少对基坑围护的影响,之后方可分段拆除次梁和主梁,栈桥梁拆除完成后,再分段拆除栈桥立柱。基坑栈桥拆除过程中如地下主体结构已施工,应考虑地下楼板结构的承载能力。

8.3.4 栈桥拆除方法主要有氧气乙炔火焰切割、人工风镐破碎、 机械炮锤破碎、爆破拆除等。

当采用火焰切割作业时,气瓶放置位置应满足安全距离,操作时应满足安全规定,切割一般自上而下进行。

当采用人工拆除作业时,作业人员应站在稳定的结构或脚手架上操作,栈桥构件应采取有效的防下坠控制措施。 当采用机械拆除时,选定的机械设备时应考虑操作空间, 如机械需在未拆除的栈桥上或楼板上操作时,应确保承载力满足要求。

当采用爆破拆除时,应根据周围环境作业条件、爆破规模,按现行国家标准《爆破安全规程》GB6722分级,采取相应的安全技术措施,并满足相关管理规定。爆破孔宜在栈桥梁或栈桥板施工时预留。

8.3.5 栈桥拆除时,如采用分段拆除,应考虑未拆除部分的稳

定性,尤其是拆除机械布置在栈桥板上时,如有必要需对未拆除部分进行加固处理。